Selasa, 28 April 2015

Sifat Kimia dan Metabolisme Karbohidrat

A.   Sifat Kimia Karbohidrat

1.    Sifat Mereduksi
Monosakarida dan beberapa disakarida mempunyai sifat dapat mereduksi, terutama dalam suasana basa. Sifat sebagai reduktor ini dapat digunakan untuk keperluan identifikasi karbohidrat maupun analisis kuantitatif. Sifat mereduksi ini disebabkan oleh adanya gugus aldehida atau keton bebas dalam molekul karbohidrat. Sifat ini tampak pada reaksi reduksi ion-ion logam misalnya ion Cu++ dan ion Ag+ yang terdapat pada pereaksi-pereaksi tertentu misalnya:

v  Pereaksi Fehling
Pereaksi ini dapat direduksi selain oleh karbohidrat yang mempunyai sifat mereduksi, juga dapat direduksi oleh reduktor lain. Pereaksi Fehling terdiri atas dua larutan, yaitu larutan Fehling A dan larutan Fehling B. Larutan Fehling A adalah larutan CuSO4  dalam air, sedangkan larutan Fehling B adalah larutan garam Knatartrat dari NaOH dalam air. Kedua macam larutan ini disimpan terpisah dan baru dicampur menjelang digunakan untuk memeriksa suatu karbohidrat.

v  Pereaksi Benedict
Pereaksi ini berupa larutan yang mengandung kuprisulfat, natriumkarbonat dan natriumsitrat. Glukosa dapat mereduksi ion Cu++ dari kuprisulfat menjadi ion Cu+ yang kemudian mengendap sebagai Cu2O. Adanya natriumkarbonat dan natriumsitrat membuat pereaksi Benedict bersifat basa lemah. Endapan yang terbentuk dapat berwarna hijau, kuning atau merah bata. Warna endapan ini tergantung pada konsentrasi karbohidrat yang diperiksa.

v  Pereaksi Barfoed
Pereaksi ini terdiri atas larutan kupriasetat dan asam asetat dalam air, dan digunakan untuk membedakan antara monosakarida dengan disakarida. Monosakarida dapat mereduksi lebih cepat daripada disakarida. Jadi Cu2O terbentuk lebih cepat oleh monosakarida daripada oleh disakarida, dengan anggapan bahwa konsentrasi monosakarida dan disakarida dalam larutan tidak berbeda banyak. Tauber dan Kleiner membuat modifikasi atas pereaksi ini, yaitu dengan jalan mengganti asam asetat dengan asam laktat dan ion Cu+ yang dihasilkan direaksikan dengan pereaksi warna fosfomolibdat hingga menghasilkan warna biru yang menunjukkan adanya monosakarida. Disakarida dengan konsentrasi rendah tidak memberikan hasil positif. Perbedaan antara pereaksi Barfoed dengan pereaksi Fehling atau Benedict ialah bahwa pada pereaksi Barfoed digunakan suasana asam.

2.    Pembentukan Furfural
Dalam larutan asam yang encer, walaupun dipanaskan, monosakarida umumnya stabil. Tetapi apabila dipanaskan dengan asam kuat yang pekat, monosakarida menghasilkan furfural atau derivatnya. Reaksi pembentukan furfural ini adalah reaksi dehidrasi atau pelepasan molekul air dari suatu senyawa.
Pentosa-pentosa hampir secara kuantitatif semua terdehidrasi menjadi furfural. Dengan dehidrasi heksosa-heksosa menghasilkan hidroksimetilfurfural. Oleh karena furfural apabila direaksikan dengan α naftol atau timol, reaksi ini dapat dijadikan reaksi pengenal untuk karbohidrat.
            Pereaksi Molisch terdiri atas larutan α naftol dalam alkohol. Apabila perekasi ini ditambahkan pada larutan glukosa misalnya, kemudian secara hati-hati ditambahkan asam sulfat pekat, akan terbentuk dua lapisan zat cair. Pada batas antara kedua lapisan itu akan terjadi warna ungu karena terjadi reaksi kondensasi antara furfural dengan α naftol. Walaupun reaksi ini tidak spesifik untuk karbohidrat, namun dapat digunakan sebagai reaksi pendahuluan dalam analisis kualitatif karbohidrat. Hasil negatif merupakan suatu bukti bahwa tidak ada karbohidrat.

3.    Pembentukan Osazon
Semua karbohidrat yang mempunyai gugus aldehida atau keton bebas akan membentuk osazon bila dipanaskan bersama fenilhidrazin berlebih. Osazon yang terjadi mempunyai bentuk kristal  dan titik lebur yang khas bagi masing-masing karbohidarat. Hal ini sangat penting artinya karena dapat digunakan untuk mengidentifikasi karbohidrat dan merupakan salah satu cara untuk membedakan beberapa monosakarida, misalnya antara glukosa dan galaktosa yang terdapat dalam urine wanita yang sedang dalam masa menyusui.
Pada reaksi antara glukosa dengan fenilhidrazin, mula-mula terbentuk D-glukosafenilhidrazon, kemudian reaksi berlanjut hingga terbentuk D-glukosazon. Glukosa, fruktosa dan manosa dengan fenilhidrazin menghasilkan osazon yang sama.


4.    Pembentukan Ester
Adanya gugus hidroksil pada karbohidrat memungkinkan terjadinya ester apabila direaksikan dengan asam. Monosakarida mempunyai beberapa gugus –OH dan dengan asam fosfat dapat menghedakinya menghasilkan ester asam fosfat. Gugus hidroksil dari monosakarida bereaksi dengan asam fosfat membentuk ester sebagai berikut :

                                                  OH                                  OH
-CH2OH + HO-P=O                -CH2-O-P=O+H2O
                                                 OH                                   OH

5.    Isomerisasi
Dalam larutan asam encer monosakarida dapat stabil, tidak demikian halnya apabila monosakarida dilarutkan dalam basa encer. Glukosa dalam larutan basa encer akan berubah sebagian menjadi fruktosa dan manosa. Ketiga monosakarida ini ada dalam keadaan keseimbangan. Demikian pula, apabila yang dilarutkan itu fruktosa atau manosa, keseimbangan antara ketiga monosakarida akan tercapai juga. Reaksi ini dikenal sebagai transformasi Lobry de Bruin van Eckenstein yang berlangsung melalui proses enolisasi.

6.    Pembentukan Glikosida
Apabila glukosa direaksikan dengan metilalkohol, menghasilkan dua senyawa. Kedua senyawa ini dapat dipisahkan satu dari yang lain dan keduanya tidak memiliki sifat aldehida. Keadaan ini membuktikan bahwa yang menjadi pusat reaksi adalah gugus –OH yang terikat pada atom karbon nomor 1. Senyawa yang terbentuk adalah suatu asetal dan disebut secara umum glikosida.  Ikatan yang terjadi antara gugus metil dengan monosakarida disebut ikatan glikosida dan gugus  –OH yang bereaksi disebut gugus –OH glikosidik.Glikosida banyak terdapat dalam alam, yaitu pada tumbuhan. Bagian yang bukan karbohidrat dalam glikosida ini dapat berupa metilalkohol, gliserol atau lebih kompleks.

B.   Metabolisme Karbohidrat
  1. Glikolisis
Glikolisis adalah suatu proses yang menghasilkan perubahan satu molekul glukosa menjadi dua molekul piruvat. Proses ini dapat berlangsung didalam sel yang paling sederhana tanpa memerlukan oksigen, lintas glikolisis memperlihatkan lima fungsi utama di dalam sel yakni :
1.    Glukosa diubah menjadi piruvat, yang dapat dioksidasi dalam siklus asam sitrat.
  1. Banyak senyawa selain glukosa dapat memasuki lintas glikolisis pada tahap antara (intermediat).
  2. Dalam beberapa sel lintas tersebut diubah untuk sintesis glukosa.
  3. Lintas tersebut mengandung zat antara yang terlibat dalam reaksi metabolik lainnya.
  4. Untuk tiap-tiap molekul glukosa yang dikonsumsi, secara netto dihasilkan dua molekul ATP melalui fosforilasi tingkat substrat.
Secara keseluruhan, persamaan yang setara untuk proses glikolisis adalah :
C6H12O6 +  2 ADP  +  2 NAD+ +  2 Pi à
2 C3H4O3 +  2 ATP  +  2 NADH +  2H+ +  2 H2O
Rumus yang tampak di atas tidak memperlihatkan kerumitan lintas glikolitik yang melibatkan sepuluh langkah reaksi enzimatik sitoplasmik yaitu :
  • Heksokinase mengkatalisis fosforilasi α-D-glukosa menjadi α-D-glukosa-6 fosfat secara ireversibel, disini diperlukan  ATP dan Mg2+.
  • Glukosa-6-fosfat isomerase mengkatalisis isomerasi dari α-D-glukosa-6-fosfat menjadi α-D-fruktosa-6-fosfat secara reversibel yang berlangsung dengan bebas.
  • Fosfofruktokinase memfosforilasi α-D-fruktosa-6-fosfat menjadi α-D-fruktosa-1,6-bisfosfat secara ireversibel, memerlukan ATP dan Mg2+. Fosfofruktokinase diatur secara alosterik dengan sejumlah efektor dimana semuanya terlibat dalam transduksi energi.
  • Fruktosa-1,6-bisfosfat aldolase memecah α-D-fruktosa-1,6-bisfosfat menjadi D-gliseraldehida-3-fosfat dan dihidroksiaseton fosfat.
  • Triosafosfat isomerase mengubah dihidroksiaseton fosfat menjadi D-gliseraldehida-3-fosfat.
  • Gliseraldehida-3-fosfat dehidrogenase mengkatalisis oksidasi D-gliseraldehida-3-fosfat, disertai dengan fosforilasi zat antara asam karboksilat, untuk menghasilkan  D-1,3-bisfosfogliserat. NAD+ direduksi menjadi   NADH + H+. Ini merupakan satu-satunya reaksi redoks yang terjadi dalam glikolisis.
  • Fosfogliserat kinase mengubah D-1,3-bisfosfogliserat menjadi   D-3-fosfogliserat, langkah ini menghasilkan ATP.
  • Fosfogliseromutase mengkatalisis isomerasi antara                     D-3-fosfogliserat dan D-2-fosfogliserat.

  •   Enolase mendehidrasi D-2-fosfogliserat menghasilkan fosfoenolpiruvat. Reaksi ini memerlukan Mg2+.
  •     Piruvat kinase mengubah secara ireversibel fosfoenolpiruvat menjadi piruvat (produk akhir glikolisis).


2.    Perubahan Piruvat
Perubahan piruvat yang dihasilkan melalui glikolisis bergantung pada ketersediaan oksigen, keadaan energi dari suatu sel, dan mekanisme yang tersedia bagi sel untuk mengoksdasi NADH menjadi NAD+.
C3H4O3 + 2 1/2 O2 à 3 CO2 + 2 H2O
Agar glikolisis dapat terus berlangsung, maka NAD+ yang diperlukan untk reaksi oksidatifdlam langkah 6 harus dihasilkan lagi dari NADH. Tanpa oksigen, reaksi dapat berlangsung dengan mereduksi piruvat mejadi laktat, yang dikatalisis oleh laktat dehidrogenase dengan reaksi :
3.    Glukoneogenesis
Dalam sel mamalia, glukosa adalah sumber energi yang paling melimpah, glukosa dimetabolisme di dalam semua sel sebagai bahan bakar glikolitik dan disimpan dalam hati dan otot sebagai polimer glikogen dengan syarat yang diperlukan adalah:
1.    ketersediaan rangka karbon spesifik yang berasal dari asam amino tertentu,
2.    energi dalam entuk ATP dan
3.    enzim yang sesuai.



Tidak ada komentar:

Posting Komentar